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Abstract. In the classical cam displacement diagrams, e.g. skewed parabolic motion, simple or double-dwell harmonic
motion, cycloidal motion or the cubic motion, the cam pressure angle in a rise or fall segment is often a function of two
variables, that is, the cam rotation angle and the cam prime circle radius. Consequently this will hamper us to obtaining
the maximum pressure angle, since we have only one equation and two unknown variables, but being a decreasing
function with respect to the prime circle radius. On the other hand the prime circle radius will determine the cam size and
consequently should be obtained as a function of a maximum pressure angle. Some authors have proposed a graphical
nomogram for this computation, with some limitations and inaccuracy. This work proposes a new way to calculate the
prime circle radius analytically, based on some trigonometric expressions.
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1. INTRODUCTION

In general, in the design of cams with radial translating followers, the performance and efficiency are closely linked to
the maximum pressure angle, so that initially one determines the maximum pressure angle such that friction and vibration
on the follower are reduced to tolerable levels. From that the problem is to determine a cam-follower geometry, which
is as compact as possible in order to have a good dynamic response and to reduce the mechanical power due to a lower
inertia, Koomok and Muffley (1955).

In this sense, the prime circle radius, Rp, reflects the most important determinant factor on the cam size Yu and Lee
(1998). Furthermore the value of the prime circle radius for each cam curve type is directly proportional to the cam
size and inversely proportional to the value of the maximum pressure angle. Thus, there will be an unique value for Rp
that will satisfy the given maximum pressure angle. A value smaller than that, which might be interesting for the cam
geometry and efficiency, will result in a maximum pressure angle larger than the specified one. On the other hand a larger
value, while improving the angle of pressure to lower, will result in higher power demand and excess of material and,
thus, resulting into additional costs.

According to the above, the problem is to determine, with a desired accuracy, the prime circle radius from a given
maximum pressure angle. Unfortunately, the expressions developed so far do not allow analytical computation of Rp.
Calculation processes presented by several authors, who have approached the subject, are based on nomograms, iterative
numerical methods or by pure and simple computer trial and error Rothbart (2004), Uicker et al. (2010), Norton (2009).

In this work the analytical expressions for calculating the prime circle radius are obtained, starting from the premise
that one does not need the rise angle of the follower, θ0, where the maximum pressure angle is reached.

2. NOTATION

ϕ pressure angle
ϕ̂ maximum pressure angle
β elevation angle
βa elevation angle to the first parabolic segment (parabolic curve only)
βb elevation angle to the second parabolic segment (parabolic curve only)
θ cam angle, ranging from 0 to β on elevation diagrams
θ0 critical value, where occurs the maximum pressure angle
Rp prime circle radius
h maximum displacement of follower
ε offset of the follower

all angles in degrees



Proceedings of COBEM 2011
Copyright c© 2011 by ABCM

21st International Congress of Mechanical Engineering
October 24-28, 2011, Natal, RN, Brazil

3. PRELIMINARY CONSIDERATIONS

According to Rothbart (2004), in radial cams with a translating roller follower the pressure angle ϕ is defined as the
angle between the direction of follower movement with the direction of the axis of transmission. The axis of transmission,
Figure 1, is normal to cam primitive curve passing through the centre of the roller. The pitch curve is obtained from an
offset on the cam profile, equal to the radius of the roller. Note that an angle ϕ of π2 makes the movement of the follower
impossible, while with ϕ = 0 the cam does not move the follower Gonzales-Palacios and Angeles (1993).

Figure 1. Prime circle, pitch curve and pressure angle for a radial cam with translating follower

During a radial follower elevation, the pressure angle varies from 0 to ϕ̂ and goes back to zero again. Geometric relations,
Figure 1 and the cam angular velocity can be used to obtain the following expression for the tangent of ϕ as a function of
the rotation angle, θ (ranging from zero to β) and Rp:

tanϕ =
f ′(θ)− ε

f(θ) +
√
R2
p − ε2

(1)

where (ε) is the follower’s offset. Note that tanϕ is a surface depending on θ and Rp, being a strictly decreasing function
of Rp. So, given a specific value for ϕ, means that a plane will cut that surface, defining a curve on (θ,Rp). Now, one
may require that the derivative of tanϕ with respect to θ is equal to zero, in order to find an stationary value. That will
result in a differential equation, which is a condition for θ0. This is then solved, obtaining theta0 as a function of Rp,
which is another curve on (θ,Rp). The intersection of those curves define an unique point (θ0, Rp), which is the desired
solution. This procedure is described below. Differentiating Eq. (1) and setting it to zero result in:

f ′′(θ0)
[
f(θ0) +

√
R2
p − ε2

]
−f ′(θ0)

[
f ′(θ0)− ε

]
= 0 (2)

where ϕ̂ is the angle ϕ obtained by the introduction of the argument θ0 in Eq. (1). Isolating the term
√
R2
p − ε2 in Eq. (1)

and inserting it in Eq. (2), we get:

tan ϕ̂ =
f ′′(θ0)

f ′(θ0)
(3)

Afterwards we’ll comment on followers with ε 6= 0. For the moment we will consider the ε = 0, a situation more common
in flat cams. In this case Eq. (1) becomes:

tanϕ =
f ′(θ)

f(θ) +Rp
(4)

and

f ′′(θ0)(f(θ0) +Rp)− f ′(θ0)2 = 0 (5)
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Note that Eq. (3) is independent of ε, and can be used in both cases. Eq. (3) will be important in obtaining the equations
for offset followers, implying that we should only repeat the calculations from Eq. (2), taking advantage of all previous
developments.

4. CALCULATION OF THE PRIME CIRCLE

As it was mentioned before, now the problem is to obtain the prime circle radius from a known ϕ̂. For that we
use Eq. (4) and Eq. (5) in order to compute variables, θ0 and Rp. Since the function f(θ) is usually a composition of
trigonometric functions, solutions to Eq. (4) will often be transcendental expressions and thus difficult to obtain.

Uicker et al. (2010) Proposed a nomogram, Figure 2, which allows the calculation of Rp for the simple harmonic
motion and for cycloidal motion. Norton (2009) suggests an initial estimate for Rp and a subsequent iteration, which
provide an approximate solution.

Figure 2. Nomogram showing that for ϕ̂ = 20o and β = 90o the solution is Rp
h = 2.3 for the harmonic motion and

Rp
h = 3.1 for the cycloidal motion

Our approach on calculating the prime circle radius will consider the elevation curves of type parabolic, simple har-
monic, double harmonic and cycloidal, because these curves involve transcendental functions that make it difficult to
obtain the maximum pressure angle ϕ.

On the other hand offset followers are of interest only when a reduction in the transmission angle is desired. In this
case the offset will provide the desired improvement. Thus the analysis is always made with the radial follower, that
is ε = 0, which will be the object of most of our development. Therefore the equations (3), (4) and (5) will be key to
obtaining the prime circle radius as a function of tan ϕ̂.

4.1 Calculation of Rp for the Parabolic Motion

As it is shown in Figure 3, the parabolic curve motion consists of two sections of parabolic functions. So the expres-
sions take the form:

f(θ) =

{
h
ββa

θ2 if 0 ≤ θ ≤ βa
h− h

ββb
(β − θ)2 if βa < θ ≤ β

(6)

f ′(θ) =

{
2h
ββa

θ if 0 ≤ θ ≤ βa
2h
ββb

(β − θ) if βa < θ ≤ β
(7)

f ′′(θ) =

{
2h
ββa

if 0 ≤ θ ≤ βa
− 2h
ββb

if βa < θ ≤ β
(8)

The second piece of parabolic curve will contribute in the chart "tanϕ x θ" with a strictly decreasing function, Figure 4,
so that this section has minimum and maximum values at the endpoints of its domain. This implies that most of the study
should be done in the first parabolic portion. Then, for the first parabolic section, Eq. (5) becomes:

2h

ββa
(
h

ββa
θ20 +Rp)− (

2h

ββa
θ0)2 = 0
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Figure 3. The parabolic curve motion consists of two parabolic sections

what makes immediate:

θ0 =

√
ββa

Rp
h

(9)

Now, squaring Eq. (4) and inserting Eqs. (6) and (7) result in:

tan2 ϕ̂ =
( 2h
ββa

)2θ20

( h
ββa

θ20 +Rp)2

From Eq. (9), θ20 = ββa
Rp
h , which can be inserting in the above expression to get:

tan2 ϕ̂ =
h

ββaRp

which implies that

Rp
h

=
1

ββa tan2 ϕ̂
(10)

and comparing Eq. (33) with Eq. (9), we conclude that

θ0 =
1

tan ϕ̂
(11)

Since this development considered only the first section of the parabolic curve, the result applies only when βa > θ0,
Figure 4b. Furthermore, we can conclude from Eq. (11) that Eq. (10) should apply only if

βa >
1

tan ϕ̂
(12)

For the situation where βa ≤ 1
tan ϕ̂ , Figure 4a, the maximum point θ0 will occur at βa and, by replacing this in Eq. (4),

will result in

tan ϕ̂ =

2h
ββa

βa
h
ββa

β2
a +Rp

which provides that

Rp
h

=
2

β tan ϕ̂
− βa

β
(13)

The final the result for the parabolic curve can be expressed by

Rp
h

=

{
2

β tan ϕ̂ −
βa
β if βa ≤ 1

tan ϕ̂

1
ββa tan2 ϕ̂ if βa > 1

tan ϕ̂

(14)
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Figure 4. Diagram tanϕ x θ for the parabolic curve; in (a) the maximum of tanϕ occurs at βa and in (b) the maximum
occurs in the interval ]0, βa[

4.2 Calculation of Rp for the Simple Harmonic Motion

For the simple harmonic motion, the function f and its derivatives take the form

f(θ) =
h

2
(1− cos

π

β
θ) (15)

f ′(θ) =
hπ

2β
sin

π

β
θ (16)

f ′′(θ) =
hπ2

2β2
cos

π

β
θ (17)

In this case, Eq. (5) can be simplified to

cos
π

β
θ0(1− cos

π

β
θ0 +

2Rp
h

)− sin2 π

β
θ0 = 0

and using the trigonometric identity sin2 π
β θ0 = 1− cos2 πβ θ0, one obtains

cos
π

β
θ0 =

h

h+ 2Rp

Now, squaring the Eq. (4) and inserting the functions f(θ0) and f ′(θ0) result in

tan2 ϕ̂=
π2

β2

1− cos2 πβ θ0

(
h+2Rp
h − cos πβ θ0)2

(18)

substituting the expression cos πβ θ0 = h
h+2Rp

in the above equation leads to

tan2 ϕ̂=
π2

β2

1

4
Rp
h + 4

R2
p

h2

which is the same as

(
Rp
h

)2 +
Rp
h
− π2

4β2 tan2 ϕ̂
= 0

Since Rp
h > 0, the solution of that equation is

Rp
h

=
1

2

√
1 + (

π

β tan ϕ̂
)2 − 1

2
(19)
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4.3 Calculation of Rp for the Double Harmonic Motion

For the double harmonic motion the function f(θ) is

f(θ) =
h

2
[(1− cos

π

β
θ)− 1

4
(1− cos

2π

β
θ)]

For convenience, let us replace cos 2π
β θ = cos2 πβ θ − sin2 π

β θ in the above equation, obtaining another form and its
derivatives:

f(θ) =
h

4
(1− (2− cos

π

β
θ) cos

π

β
θ) (20)

f ′(θ) =
hπ

2β
(1− cos

π

β
θ) sin

π

β
θ (21)

f ′′(θ) =
hπ2

2β2
(cos

π

β
θ − 2 cos2

π

β
θ + 1) (22)

For this case Eq. (5), after simplification, will be

(cos
π

β
θ − 1)(

4Rp
h

+ 2 cos
π

β
θ − cos2

π

β
θ + 8

Rp
h

cos
π

β
θ − 1) = 0

since θ = 0 is not a maximum for tanϕ, the conclusion is that

cos2
π

β
θ + (2 + 8

Rp
h

) cos
π

β
θ − (1− 4Rp

h
) = 0

and, since cos πβ θ ≤ 1 and Rp
h > 0, the positive sign of the radical can be ignored, obtaining for solution

cos
π

β
θ = 1 + 4

Rp
h
− 2

Rp
h

√
1 +

3h

4Rp
(23)

Now, squaring the Eq. (4) and inserting f(θ0) and f ′(θ0) one obtains

tan2 ϕ̂ =
4π2

β2

(1− cos2 πβ θ0)(1− cos πβ θ0)2

[1− (2− cos πβ θ0) cos πβ θ0 + 4
Rp
h ]2

Substituting Eq. (23) in the expression above and defining a K factor as

K =

√
1 + 3(

π

β tan2 ϕ̂
)2 (24)

results in the following solution for Rph

Rp
h

=
3(K − 1)2

8K − 4
(25)

4.4 Calculation of Rp for the Cycloidal Motion

For the cycloidal motion, the function f(θ) and its derivatives have the form:

f(θ) = h(
θ

β
− 1

2π
sin

2π

β
θ) (26)

f ′(θ) =
h

β
(1− cos

2π

β
θ) (27)

f ′′(θ) =
2πh

β2
sin

2π

β
θ (28)

It is more convenient to use the Eq. (3) and, by substituting Eq. (27) and Eq. (28) in it, one obtains

tan ϕ̂=
2π

β

sin 2π
β θ0

1− cos 2π
β θ0
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Using the trigonometric identities, sin 2π
β θ0 = 2 sin π

β θ0 cos πβ θ0 and cos 2π
β θ0 = cos2 πβ θ0 − sin2 π

β θ0 results in

tan ϕ̂=
2π

β

1

tan π
β θ0

which leads to

tan
π

β
θ0 =

2π

β

1

tan ϕ̂
(29)

Now, using Eq. (4) with equations (26) and (27) and replacing θ by θ0 result in

tan ϕ̂ =

h
β (1− cos 2π

β θ0)

h( θβ −
1
2π sin 2π

β θ0) +Rp

which provides:

Rp
h

=
1

2π
sin

2π

β
θ0 +

1− cos 2π
β θ0

β tan ϕ̂
− θ0
β

Now, using the two trigonometric relations for double angles in sin and cos, one can get

Rp
h

=
1

2π
(

2 tan π
β θ0

1 + tan2 π
β θ0

) +
1− (

1−tan2 π
β θ0

1+tan2 π
β θ0

)

β tan ϕ̂
− θ0
β

using Eq. (29) in the above equation we reach

Rp
h

=
2

βtan ϕ̂
− θ0
β

Noting that θ0β = 1
π arctan( 2π

β tan ϕ̂ ), Eq. (29), the above equation result in

Rp
h

=
1

π

(
2π

β tan ϕ̂
− arctan(

2π

β tan ϕ̂
)

)
(30)

4.5 Offset Cam Followers

Offset cam followers are only used when the analysis of the radial follower has shown that the cam behaviour was
unsatisfactory. The analyst should be especially careful, because in this type of cam follower, the pressure angle decreases
on the rise, but increases in the same proportion on the return.

For this case the process of obtaining the equations is similar to the previous case and one should be just careful to
properly introduce the equations (1) and (2), which contain the ε term, and Eq. (3).

After proceeding with this development, one will find the following expressions,
The final results are for the Parabolic Motion

Rp =


√
ε2 +

[
2h−εβ
β tan ϕ̂ −

hβa
β

]2
if βa ≤ 1

tan ϕ̂√
ε2 +

[
h

ββa tan2 ϕ̂ −
ε

tan ϕ̂

]2
if βa > 1

tan ϕ̂

(31)

for the Simple Harmonic Motion

Rp = h

√
(
ε

h
)2 +

[
1

2

√
1 + (

π

β tan ϕ̂
)2 − ε

h tan ϕ̂
− 1

2

]2
(32)

and for the Cycloidal Motion

Rp = h

√
(
ε

h
)2 +

[
2h− εβ
βh tan ϕ̂

− 1

π
arctan (

2π

β tan ϕ̂
)

]2
(33)

In this case, the expressions for θ0, though they may be obtained, are very complex and are of little interest.
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4.6 Numerical Methods

If we have Rp, the solution of Eq. (5) can be easily obtained analytically, this makes it easy to obtain a numerical
algorithm, since we can test the values of ϕ comparing them to ϕ̂ for a given set of related Rp’s conveniently chosen as
below.

error← 0.0001
ϕ̂← data input
∆Rp ← 0.001
Rp ← 0.0
While (tanϕ− tan ϕ̂ > error) then

θ0 ← solution of [f ′′(θ)(f(θ) +Rp)− f ′(θ)2 = 0]
tanϕ← f ′(θ0)/(f(θ0) +Rp)
Rp ← Rp + ∆Rp

EndWhile
data out← Rp

4.7 Summary of Expressions

The Tab. 1 compiles all results in a single table, while also allowing a comparison between the four types of equations.

Table 1. Summary of Results.

Curve θ0 K Rp
h

Harmonic β
π arccos h

h+2Rp

√
1 + ( π

β tan ϕ̂ )2 K−1
2

Double Harmonic β
π arccos(1 + 4

Rp
h − 2

Rp
h

√
1 + 3h

4Rp
)

√
1 + 3( π

β tan2 ϕ̂ )2 3(K−1)2
8K−4

Cycloid β
π arctan 2π

β tan ϕ̂
2π

β tan ϕ̂
1
π (K − arctanK)

Parabolic βa ≤ 1
tan ϕ̂

√
ββa

Rp
h

1
β tan ϕ̂ 2K − βa

β

or βa > 1
tan ϕ̂ βa

1
β tan ϕ̂

β
βa
K2

5. RESULT ANALYSIS

In this section a comparison between results obtained by a traditional numerical method with results obtained by using
the analytical functions developed in this work. That comparison can be seen in Figs. 5 and 6. In these graphs an analysis

Figure 5. Application of a numerical method and correspondent analytical equations for Parabolic and Harmonic motions
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Figure 6. Application of a numerical method and correspondent analytical equations for Double Harmonic and Cycloidal
motions

was made for four elevation angles, β = 30o, β = 60o, β = 90o and β = 120o and considering the maximum pressure
angle ϕ̂ ranging from 10o to 30o. The curves resulting from the analytical equations are continuous, but for the numerical
method the results were taken only for values of maximum pressure angle of 10o, 15o, 20o, 25o and 30o. For the numerical
method we use the algorithm presented in section 4.6, coded in C++ language, conveniently replacing the function f(θ)
and its derivatives for each curve type.

6. REFERENCES

Carra, S., Garziera, R. and Pellegrini, M., 2004. “Synthesis of cams with negative radius follower and evaluation of the
pressure angles”. Mechanism and Machine Theory, Vol. 34, pp. 1017–1032.

Chen, F.Y., 1982. “Mechanics and design of cam mechanisms”. Pergamon Press, pp. 155–162.
Gonzales-Palacios, M.A. and Angeles, J., 1993. Cam Synthesis. Kluwer Academic Publishers, The Netherlands.
Jesen, P.W., 1987. Cam Design and Manufacture. New York and Base.
Koomok, M. and Muffley, R.V., 1955. Plate cam design pressure angle analysis. New York.
Norton, R.L., 2009. Cam Design and Manufacturing Handbook. Industrial Press Inc, New York.
Rothbart, H.A., 2004. Cam design handbook. McGraw-Hill Professional, New York.
Uicker, J.J., Pennock, G. and Shigley, J.E., 2010. Theory of Machines and Mechanisms. Oxford University Press, USA.
Yu, Q. and Lee, H.P., 1998. “Size optimization of cam mechanisms with translating roller followers”. Journal of Mechan-

ical Engineering Science, Vol. 212, No. 5, pp. 381–386.

7. Responsibility notice

The authors are the only responsible for the printed material included in this paper


